ABSTRACT

Aim To present diagnostic and therapeutic possibilities for genital and peritoneal tuberculosis, mimicking to other pathological conditions, mainly, ovarian cancer.

Methods Transabdominal and transvaginal ultrasound, computed tomography, CA125 and HE 4, ROMA-index (Risk of Ovarian Maligancy Algorithm index) and diagnostic laparoscopy were performed in order to diagnose genital tuberculosis in a female patient.

Results: A 23-year-old woman from Morocco presented with intermittent abdominal pain, unintentional weight loss and primary infertility. There was no positive family history for breast or ovarian cancer and no history of previous tuberculosis (TB). Elevated CA-125 level, HE 4 normal, ROMA-Index of 13.2 % suggested high risk for epithelial ovarian cancer (EOC). Ultrasound revealed free fluid, dilated fallopian tubes and a cystic mass near the right ovary. Suspecting fallopian tube or ovarian cancer, we performed exploratory laparoscopy, revealing adhesions, multiple miliary nodules and dilated fallopian tubes. Histological investigation revealed granulomatous abscessing salpingitis with suspicion of genital TB, so antituberculous therapy was administered with success.

Conclusion Female genital tuberculosis is very rare but important in differential diagnosis and should be kept in mind regarding suspected fallopian tube or ovarian carcinoma to prevent women from extensive surgery. An algorithm for possible differentiation between peritoneal/female genital TB and EOC may be helpful in clinical setting.

Key words: ovaries, peritoneum, tuberculosis
INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by *Mycobacterium tuberculosis* and represents the leading cause of death by a single infectious agent (approximately 10 million new infections and 2 million deaths in 2016). Seven countries accounting for 64% of the new infections in 2016 are India, followed by Indonesia, China, the Philippines, Pakistan, Nigeria and South Africa (1). In Morocco, the global incidence of tuberculosis is very high, with 103 new cases per 100,000 inhabitants yearly, representing about 36,000 new cases in 2016 (2). Due to globalization and flight movements there has been an increased TB incidence in western countries. About one quarter of the world’s population has “latent tuberculosis”, which means they came in contact with mycobacterium tuberculosis, but do not suffer from tuberculosis and cannot transmit it (2). The lifetime risk when infected with TB bacteria of falling ill with tuberculosis is at 5-15% for people with a competent immune system (3). Patients suffering from HIV-Infection or any other form of acquired or innate immunodeficiency, have a higher risk of developing TB (4). Further predisposing factors are low income, bad access to health care and malnutrition (5).

Tuberculosis most commonly affects the lungs, causing cough, weight loss and bloody sputum, but can also affect other organs (“extrapulmonary tuberculosis”). In women, the most common extrapulmonary manifestation of tuberculosis usually affects the reproductive organs (“genital tuberculosis”) (6). Genital tuberculosis clinically presents with various symptoms, like chronic pelvic pain, menstrual abnormalities or infertility (7-9), but can also stay asymptomatic and only appear as an incidental finding on imaging or mimicking malignant processes of the reproductive organs (10). Infection of the reproductive organs mostly occurs secondary to pulmonary infection by hematogenous spreading, but there are also reported cases of sexual transmission through genital tuberculosis of the partner or infection by direct spreading from surrounding organs (11). In female genital tuberculosis, the most commonly affected organs are the fallopian tubes, usually presenting with hydro-/pyosalpinx or tubo-ovarian masses (12). Endometrial involvement usually leads to adhesions, while infected ovaries mainly present with tubo-ovarian masses in imaging (4). Cervical infection can mimic cervical cancer in colposcopy and is diagnosed by biopsy, showing granulomatous infection. Involvement of the vagina and vulva is rare, but we should be aware of it as a differential diagnosis (9).

PATIENTS AND METHODS

Patient and study design

A 23-year-old woman presented in September 2014, in Charité Universitätsmedizin Berlin, Gynaecological Tumour Centre and European Competence Centre for Ovarian Cancer, with a one-year history of intermittent episodes of abdominal pain. She also reported an unintentional weight loss of four kilograms in the past four months, absence of appetite and lamented dyspareunia as well as primary infertility, with a normal menstruation. She denied night sweat and cough. The patient had emigrated from Morocco the previous year, where she had studied law, and was now attending a German language school. She was married to a man from Guinea for eight months, who had been living in Germany for 17 years.

The patient’s medical and surgical histories were unremarkable; there was no positive family history for breast or ovarian cancer. A history of previous tuberculosis or contact with TB patients was denied.

Methods

Laboratory analysis of the blood was performed in Labor Berlin (Allgemeine Laborauskunft, Labor Berlin – Charité Vivantes GmbH, Berlin, Germany). Diagnosis of the current disease was based on the laboratory findings of CA-125 (<35kU/L), human epididymis (HE) protein 4 (premenopausal <70 pmol/L), Risk of Ovarian Malignancy Algorithm (ROMA) index of 7.4% is defined as a high risk for epithelial ovarian cancer (EOC) in premenopausal women and ROMA index of <7.4% is defined as low risk for EOC in premenopausal women. The ROMA was developed by Moore et al. and combines CA125 and HE4 serum levels and the menopausal status of a patient with suspicious pelvic mass, thus stratifying patients into high and low risk groups for having a malignant ovarian lesion (13). The following blood analyses were also performed: C-reactive protein (CRP), haemoglobin, leukocyte, platelets, procalcitonin, albumin, pro-
tein, alkaline phosphatase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase, lipase, gamma-glutamyltransferase, lactate dehydrogenase (LDH), creatinine, urine acid, sodium, potassium, International Normalized Ratio (INR).

Also, HIV (HIV 1/2 antibody and P24 antigen) (Screen – Elecsys HIV combi PT, Roche, Roche Diagnostics, Penzberg, Germany), hepatitis B (hepatitis B antibody in serum) (Roche Diagnostics) and C tests (hepatitis C antibody in serum) (Roche Diagnostics) were performed.

Abdominal or transvaginal ultrasound was made using transvaginal ultrasound (Siemens’ ACUSON S3000) and confirmed by histopathology after diagnostic laparoscopy.

RESULTS

Initial laboratory evaluation showed elevated levels of CA-125 (224.6 kU/L, range: <35kU/L), HE 4 was not increased, 60.91 pmol/L (range: premenopausal: <70 pmol/L), ROMA index: 13.2 % (high risk for EOC). The other blood counts were within the normal range. HIV, hepatitis B and C tests were negative. Transvaginal ultrasound revealed small amounts of free fluid in the pouch of Douglas, dilated fallopian tubes on both sides with the suspicion of sactosalpinx (Figure 1), and a cystic mass with internal echogenicity near the right ovary as well as an unclear structure near the left ovary (Figure 2). Ultrasound of the liver and kidneys was normal.

Suspecting a malignant process of the fallopian tubes or the ovaries, we performed an exploratory laparoscopy for an accurate diagnosis. The operation revealed few adhesions between the abdominal wall and pelvic organs and multiple diffuse, white miliary nodes of the peritoneum referred for presumed peritoneal carcinosis (Figure 3). The fallopian tubes were dilated on both sides and covered in fine miliary nodes. The left ovary seemed inconspicuous, the right ovary was adherent to the pelvic wall, but as far as visible also inconspicuous.

Peritoneal wall biopsies were taken and 20 mL of ascites was aspirated during surgery and sent for histological investigations. Furthermore, a unilateral salpingectomy on the left side was performed, also for histological investigations. The
histopathological investigation of the peritoneal biopsies revealed necrotizing granulomatous changes consistent with TB with no malignant cells (Figure 4), thus excluding a malignant process. Histopathological investigation of the fallopian tube showed granulomatous abscessifying salpingitis with suspicion of genital tuberculosis.

Acid-fast stain and culture were negative for *Mycobacterium tuberculosis*.

A CT scan postop of the abdomen, pelvic and thorax showed a mass of 8x15 mm near the right ovary, as well as a mass of 25x31 mm near the left ovary with a tooth-shaped structure embedded in its centre. Additionally, the CT scan revealed accentuated mesenterial, paraaortal, iliac and inguinal lymph nodes.

Suspecting genital tuberculosis, we started a treatment with eremufat, isozid and myambutol that was continued for nine months. The serum CA-125 level returned to normal levels after antituberculous therapy. The patient is after a follow-up period of 24 months currently asymptomatic. Because of extensive irreparable tubal damage, the patient was waiting for an *in vitro* fertilization cycle.

**DISCUSSION**

Female genital tuberculosis shows an increasing incidence in the western world due to globalization (14). Patients with genital TB in European countries are usually immigrants from the third world countries where incidence is high, and aged between 20-40. Patients with invasive ovarian epithelial cancer have peak incidence at 56 -60 years of age (15). Female genital TB is an important differential diagnosis for diverse pelvic processes, since symptoms can vary widely from infertility to abnormal bleedings or chronic pelvic pain (7-9). As TB can cause elevated CA-125 levels as well as ascites and pelvic masses, it should be kept in mind as differential diagnosis especially regarding young women from high-TB-incidence areas with suspicion of fallopian tube or ovarian carcinoma without positive family history or BRCA-mutations (14-17). Acid-fast stain and culture as well as CA-125 levels are often insufficient for diagnosis due to their lack of sensitivity and/or specificity (16). Genital and peritoneal tuberculosis have no pathognomonic features, no remarkable physical finding linked to the condition itself, making diagnosis more challenging.

Usually, symptoms are linked with affected neighbouring systems; e.g. dysuria and voiding frequency, anorexia, nausea, vomiting, bowel dysfunction, loss in body weight. Palpable tumour mass in pelvic region can often be misdiagnosed as ovarian cancer or peritoneal carcinomatosis. In some cases, patient’s family medical history of TB can be helpful in diagnostics. However, indirect diagnostics such are tuberculin skin test, complete blood count (CBC) and sputum staining for *Mycobacterium* are not helpful, as demonstrated by Hasanzadeh et al. in their case series (11) showing presence of tumour mass in pelvis. Elevated Ca-125 values often point to possible ovarian cancer, stressing necessity for surgical procedure- diagnostic laparoscopy, which can confirm diagnosis by pathohistology and provide sample of ascites for PCR analysis (15). Invasive diagnostics such as laparoscopy may be necessary to obtain biopsies for histological examination, usually showing necrotizing granulomatous infection, or gain ascetic fluid to perform PCR for *M. tuberculosis* (17,18). Diagnosis by intrasurgical frozen section combined with clinical findings can avoid extensive surgery that would be indicated for the treatment of malignancies of the fallopian tubes and ovaries (19). However, to avoid invasive diagnostics, an algorithm for possible differentiation between peritoneal/female genital TB and EOC may be helpful in clinical setting (Table 1). Since a normalization of CA-125 level, like in our patient, seems to correlate with the response to antituberculous therapy, it might be useful as a follow-up marker.
in patients with genital or peritoneal TB (20,21). Human epididymis protein 4 (HE4) shows higher specificity than CA-125 regarding benign gynecological processes (22), and can also predict surgical outcome in patients with EOC (23). Showing significantly lower levels in lung TB patients than in patients with lung malignancies, it may be used as a marker to differentiate between malignancies and TB (24). One retrospective comparison of CA-125 and HE4 levels in peritoneal TB and epithelial ovarian cancer patients showed significantly lower HE4 and CA-125 levels in TB patients and thus suggests that, using a certain cut-off for both markers (HE4: 151.4 pmol/L and CA125: 563.5 U/l, higher results indicating EOC), the combined evaluation of both biomarkers may help to presurgically differentiate peritoneal TB from EOC (25). Uncommon infectious diseases like TB or actinomycosis (26) must be kept in mind as a differential diagnosis for EOC, to prevent women from unnecessary and life-altering extensive surgery.

Female genital tuberculosis is a rare, forgotten, but very important differential diagnosis and should be kept in mind regarding suspected fallopian tube or ovarian carcinoma to prevent women from extensive surgery. An algorithm for possible differentiation between peritoneal/ female genital tuberculosis and epithelial ovarian cancer may be helpful in clinical setting.

FUNDING
No specific funding received for this study

TRANSPARENCY DECLARATION
Competing interests: None to declare

REFERENCES


